ShiningDan的博客

ES6入门

本文是我在学习 ECMAScript 6 时的记录,用于个人查询总结。在学习的过程中参考过很多别人的文章,如有需要,可以根据链接详细学习:

ECMAScript 6简介

ECMAScript和JavaScript的关系

要讲清楚这个问题,需要回顾历史。1996年11月,JavaScript的创造者Netscape公司,决定将JavaScript提交给国际标准化组织ECMA,希望这种语言能够成为国际标准。次年,ECMA发布262号标准文件(ECMA-262)的第一版,规定了浏览器脚本语言的标准,并将这种语言称为ECMAScript,这个版本就是1.0版。

该标准从一开始就是针对JavaScript语言制定的,但是之所以不叫JavaScript,有两个原因。一是商标,Java是Sun公司的商标,根据授权协议,只有Netscape公司可以合法地使用JavaScript这个名字,且JavaScript本身也已经被Netscape公司注册为商标。二是想体现这门语言的制定者是ECMA,不是Netscape,这样有利于保证这门语言的开放性和中立性。

因此,ECMAScript和JavaScript的关系是,前者是后者的规格,后者是前者的一种实现(另外的ECMAScript方言还有Jscript和ActionScript)。日常场合,这两个词是可以互换的。

部署进度

各大浏览器的最新版本,对ES6的支持可以查看 kangax.github.io/es5-compat-table/es6/。随着时间的推移,支持度已经越来越高了,ES6的大部分特性都实现了

ES6 和 ES5 的对比

let 和 const

let 命令

let 命令相比于 var 命令,有一下区别:

  1. 不存在变量提升
  2. 暂时性死区
  3. 不允许重复声明
块级作用域

ES5只有全局作用域和函数作用域,没有块级作用域。let实际上为JavaScript新增了块级作用域。

块级作用域与函数声明

ES5 规定,函数只能在顶层作用域和函数作用域之中声明,不能在块级作用域声明。

ES6 引入了块级作用域,明确允许在块级作用域之中声明函数。

ES6 改变了块级作用域内声明的函数的处理规则,显然会对老代码产生很大影响。为了减轻因此产生的不兼容问题,ES6在附录B里面规定,浏览器的实现可以不遵守上面的规定,有自己的行为方式。

  • 允许在块级作用域内声明函数。
  • 函数声明类似于var,即会提升到全局作用域或函数作用域的头部。
  • 同时,函数声明还会提升到所在的块级作用域的头部。

注意,上面三条规则只对 ES6 的浏览器实现有效,其他环境的实现不用遵守,还是将块级作用域的函数声明当作let处理。

考虑到环境导致的行为差异太大,应该避免在块级作用域内声明函数。如果确实需要,也应该写成函数表达式,而不是函数声明语句。

const命令

const声明一个只读的常量。一旦声明,常量的值就不能改变。

const声明的变量不得改变值,这意味着,const一旦声明变量,就必须立即初始化,不能留到以后赋值。

1
2
const foo;
// SyntaxError: Missing initializer in const declaration

const的作用域与let命令相同:只在声明所在的块级作用域内有效。

const命令声明的常量也是不提升,同样存在暂时性死区,只能在声明的位置后面使用。

const声明的常量,也与let一样不可重复声明。

对于复合类型的变量,变量名不指向数据,而是指向数据所在的地址。const命令只是保证变量名指向的地址不变,并不保证该地址的数据不变,所以将一个对象声明为常量必须非常小心。

如果真的想将对象冻结,应该使用Object.freeze方法。除了将对象本身冻结,对象的属性也应该冻结

1
2
3
4
5
6
7
8
var constantize = (obj) => {
Object.freeze(obj);
Object.keys(obj).forEach( (key, value) => {
if ( typeof obj[key] === 'object' ) {
constantize( obj[key] );
}
});
};

ES5只有两种声明变量的方法:var命令和function命令。ES6除了添加letconst命令,后面章节还会提到,另外两种声明变量的方法:import命令和class命令。所以,ES6一共有6种声明变量的方法。

顶层对象的属性

顶层对象,在浏览器环境指的是window对象,在Node指的是global对象。ES5之中,顶层对象的属性与全局变量是等价的。

ES6为了改变这一点,一方面规定,为了保持兼容性,var命令和function命令声明的全局变量,依旧是顶层对象的属性;另一方面规定,let命令、const命令、class命令声明的全局变量,不属于顶层对象的属性。也就是说,从ES6开始,全局变量将逐步与顶层对象的属性脱钩。

global 对象

ES5的顶层对象,本身也是一个问题,因为它在各种实现里面是不统一的。

  • 浏览器里面,顶层对象是window,但 Node 和 Web Worker 没有window
  • 浏览器和 Web Worker 里面,self也指向顶层对象,但是Node没有self
  • Node 里面,顶层对象是global,但其他环境都不支持。

  • 全局环境中,this会返回顶层对象。但是,Node模块和ES6模块中,this返回的是当前模块。

  • 函数里面的this,如果函数不是作为对象的方法运行,而是单纯作为函数运行,this会指向顶层对象。但是,严格模式下,这时this会返回undefined。
  • 不管是严格模式,还是普通模式,new Function(‘return this’)(),总是会返回全局对象。但是,如果浏览器用了CSP(Content Security Policy,内容安全政策),那么eval、new Function这些方法都可能无法使用。

现在有一个提案,在语言标准的层面,引入global作为顶层对象。也就是说,在所有环境下,global都是存在的,都可以从它拿到顶层对象。

垫片库system.global模拟了这个提案,可以在所有环境拿到global

1
2
3
4
5
6
// CommonJS的写法
var global = require('system.global')();

// ES6模块的写法
import getGlobal from 'system.global';
const global = getGlobal();

上面代码将顶层对象放入变量global

变量的解构赋值

数组的解构赋值

ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring)。

1
let [a, b, c] = [1, 2, 3];
默认值

解构赋值允许指定默认值。

1
2
3
4
5
let [foo = true] = [];
foo // true

let [x, y = 'b'] = ['a']; // x='a', y='b'
let [x, y = 'b'] = ['a', undefined]; // x='a', y='b'

注意,ES6 内部使用严格相等运算符(===),判断一个位置是否有值。所以,如果一个数组成员不严格等于undefined,默认值是不会生效的。

对象的解构赋值

解构不仅可以用于数组,还可以用于对象。

1
2
3
4
5
let { foo, bar } = { foo: "aaa", bar: "bbb" };
foo // "aaa"
bar // "bbb"
let { baz } = { foo: "aaa", bar: "bbb" };
baz // undefined

对象的解构与数组有一个重要的不同。数组的元素是按次序排列的,变量的取值由它的位置决定;而对象的属性没有次序,变量必须与属性同名,才能取到正确的值。

如果变量名与属性名不一致,必须写成下面这样。

1
2
3
4
5
6
7
var { foo: baz } = { foo: 'aaa', bar: 'bbb' };
baz // "aaa"

let obj = { first: 'hello', last: 'world' };
let { first: f, last: l } = obj;
f // 'hello'
l // 'world'

字符串的解构赋值

字符串也可以解构赋值。这是因为此时,字符串被转换成了一个类似数组的对象。

1
2
3
4
5
6
const [a, b, c, d, e] = 'hello';
a // "h"
b // "e"
c // "l"
d // "l"
e // "o"

数值和布尔值的解构赋值

解构赋值时,如果等号右边是数值和布尔值,则会先转为对象。

1
2
3
4
5
let {toString: s} = 123;
s === Number.prototype.toString // true

let {toString: s} = true;
s === Boolean.prototype.toString // true

上面代码中,数值和布尔值的包装对象都有toString属性,因此变量s都能取到值。

解构赋值的规则是,只要等号右边的值不是对象,就先将其转为对象。由于undefinednull无法转为对象,所以对它们进行解构赋值,都会报错。

函数参数的解构赋值

函数的参数也可以使用解构赋值。

1
2
3
4
5
function add([x, y]){
return x + y;
}

add([1, 2]); // 3
1
2
[[1, 2], [3, 4]].map(([a, b]) => a + b);
// [ 3, 7 ]

用途

交换变量的值
1
2
3
4
let x = 1;
let y = 2;

[x, y] = [y, x];
从函数返回多个值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// 返回一个数组

function example() {
return [1, 2, 3];
}
let [a, b, c] = example();

// 返回一个对象

function example() {
return {
foo: 1,
bar: 2
};
}
let { foo, bar } = example();
函数参数的定义
1
2
3
4
5
6
7
// 参数是一组有次序的值
function f([x, y, z]) { ... }
f([1, 2, 3]);

// 参数是一组无次序的值
function f({x, y, z}) { ... }
f({z: 3, y: 2, x: 1});
提取JSON数据

解构赋值对提取JSON对象中的数据,尤其有用。

1
2
3
4
5
6
7
8
9
10
let jsonData = {
id: 42,
status: "OK",
data: [867, 5309]
};

let { id, status, data: number } = jsonData;

console.log(id, status, number);
// 42, "OK", [867, 5309]
函数参数的默认值
1
2
3
4
5
6
7
8
9
10
11
jQuery.ajax = function (url, {
async = true,
beforeSend = function () {},
cache = true,
complete = function () {},
crossDomain = false,
global = true,
// ... more config
}) {
// ... do stuff
};

指定参数的默认值,就避免了在函数体内部再写var foo = config.foo || 'default foo';这样的语句。

遍历Map结构

任何部署了Iterator接口的对象,都可以用for...of循环遍历。Map结构原生支持Iterator接口,配合变量的解构赋值,获取键名和键值就非常方便。

1
2
3
4
5
6
7
8
9
var map = new Map();
map.set('first', 'hello');
map.set('second', 'world');

for (let [key, value] of map) {
console.log(key + " is " + value);
}
// first is hello
// second is world

如果只想获取键名,或者只想获取键值,可以写成下面这样。

1
2
3
4
5
6
7
8
9
// 获取键名
for (let [key] of map) {
// ...
}

// 获取键值
for (let [,value] of map) {
// ...
}
输入模块的指定方法

加载模块时,往往需要指定输入那些方法。解构赋值使得输入语句非常清晰。

1
const { SourceMapConsumer, SourceNode } = require("source-map");

字符串的扩展

ES6加强了对Unicode的支持,并且扩展了字符串对象。

字符的Unicode表示法

JavaScript允许采用\uxxxx形式表示一个字符,其中“xxxx”表示字符的码点。但是,这种表示法只限于\u0000——\uFFFF之间的字符。超出这个范围的字符,必须用两个双字节的形式表达。

1
2
3
4
5
"\uD842\uDFB7"
// "𠮷"

"\u20BB7"
// " 7"

上面代码表示,如果直接在\u后面跟上超过0xFFFF的数值(比如\u20BB7),JavaScript会理解成\u20BB+7。由于\u20BB是一个不可打印字符,所以只会显示一个空格,后面跟着一个7。

ES6 对这一点做出了改进,只要将码点放入大括号,就能正确解读该字符。

1
2
3
4
5
6
7
8
9
10
11
"\u{20BB7}"
// "𠮷"

"\u{41}\u{42}\u{43}"
// "ABC"

let hello = 123;
hell\u{6F} // 123

'\u{1F680}' === '\uD83D\uDE80'
// true

上面代码中,最后一个例子表明,大括号表示法与四字节的UTF-16编码是等价的。

有了这种表示法之后,JavaScript共有6种方法可以表示一个字符。

1
2
3
4
5
'\z' === 'z'  // true
'\172' === 'z' // true
'\x7A' === 'z' // true
'\u007A' === 'z' // true
'\u{7A}' === 'z' // true

codePointAt()

JavaScript内部,字符以UTF-16的格式储存,每个字符固定为2个字节。对于那些需要4个字节储存的字符(Unicode码点大于0xFFFF的字符),JavaScript会认为它们是两个字符。

1
2
3
4
5
6
7
var s = "𠮷";

s.length // 2
s.charAt(0) // ''
s.charAt(1) // ''
s.charCodeAt(0) // 55362
s.charCodeAt(1) // 57271

ES6提供了codePointAt方法,能够正确处理4个字节储存的字符,返回一个字符的码点。

1
2
3
4
var s = '𠮷a';

s.codePointAt(0).toString(16) // "20bb7"
s.codePointAt(2).toString(16) // "61"

codePointAt方法会正确返回32位的UTF-16字符的码点。对于那些两个字节储存的常规字符,它的返回结果与charCodeAt方法相同。

String.fromCodePoint()

ES5提供String.fromCharCode方法,用于从码点返回对应字符,但是这个方法不能识别32位的UTF-16字符(Unicode编号大于0xFFFF)。

ES6提供了String.fromCodePoint方法,可以识别0xFFFF的字符,弥补了String.fromCharCode方法的不足。在作用上,正好与codePointAt方法相反。

1
2
3
4
String.fromCodePoint(0x20BB7)
// "𠮷"
String.fromCodePoint(0x78, 0x1f680, 0x79) === 'x\uD83D\uDE80y'
// true

上面代码中,如果String.fromCodePoint方法有多个参数,则它们会被合并成一个字符串返回。

注意,fromCodePoint方法定义在String对象上,而codePointAt方法定义在字符串的实例对象上。

字符串的遍历器接口

ES6为字符串添加了遍历器接口(详见《Iterator》一章),使得字符串可以被for…of循环遍历。

1
2
3
4
5
6
for (let codePoint of 'foo') {
console.log(codePoint)
}
// "f"
// "o"
// "o"

除了遍历字符串,这个遍历器最大的优点是可以识别大于0xFFFF的码点,传统的for循环无法识别这样的码点。

includes(), startsWith(), endsWith()

传统上,JavaScript只有indexOf方法,可以用来确定一个字符串是否包含在另一个字符串中。ES6又提供了三种新方法。

  • includes():返回布尔值,表示是否找到了参数字符串。
  • startsWith():返回布尔值,表示参数字符串是否在源字符串的头部。
  • endsWith():返回布尔值,表示参数字符串是否在源字符串的尾部。

repeat()

repeat方法返回一个新字符串,表示将原字符串重复n次。

1
2
3
'x'.repeat(3) // "xxx"
'hello'.repeat(2) // "hellohello"
'na'.repeat(0) // ""

padStart(),padEnd()

ES2017 引入了字符串补全长度的功能。如果某个字符串不够指定长度,会在头部或尾部补全。padStart()用于头部补全,padEnd()用于尾部补全。

模板字符串

传统的JavaScript语言,输出模板通常是这样写的。

1
2
3
4
5
6
$('#result').append(
'There are <b>' + basket.count + '</b> ' +
'items in your basket, ' +
'<em>' + basket.onSale +
'</em> are on sale!'
);

上面这种写法相当繁琐不方便,ES6引入了模板字符串解决这个问题。

1
2
3
4
5
$('#result').append(`
There are <b>${basket.count}</b> items
in your basket, <em>${basket.onSale}</em>
are on sale!
`);

正则的扩展

RegExp构造函数

ES6改变了这种行为。如果RegExp构造函数第一个参数是一个正则对象,那么可以使用第二个参数指定修饰符。而且,返回的正则表达式会忽略原有的正则表达式的修饰符,只使用新指定的修饰符。

1
2
new RegExp(/abc/ig, 'i').flags
// "i"

上面代码中,原有正则对象的修饰符是ig,它会被第二个参数i覆盖。

字符串的正则方法

字符串对象共有4个方法,可以使用正则表达式:match()replace()search()split()

ES6将这4个方法,在语言内部全部调用RegExp的实例方法,从而做到所有与正则相关的方法,全都定义在RegExp对象上。

  • String.prototype.match 调用 RegExp.prototype[Symbol.match]
  • String.prototype.replace 调用 RegExp.prototype[Symbol.replace]
  • String.prototype.search 调用 RegExp.prototype[Symbol.search]
  • String.prototype.split 调用 RegExp.prototype[Symbol.split]

u修饰符

S6对正则表达式添加了u修饰符,含义为“Unicode模式”,用来正确处理大于\uFFFF的Unicode字符。也就是说,会正确处理四个字节的UTF-16编码。

1
2
3
4
/^\uD83D/u.test('\uD83D\uDC2A')
// false
/^\uD83D/.test('\uD83D\uDC2A')
// true

上面代码中,\uD83D\uDC2A是一个四个字节的UTF-16编码,代表一个字符。但是,ES5不支持四个字节的UTF-16编码,会将其识别为两个字符,导致第二行代码结果为true。加了u修饰符以后,ES6就会识别其为一个字符,所以第一行代码结果为false

一旦加上u修饰符号,就会修改一些正则表达式的行为。

y 修饰符

除了u修饰符,ES6还为正则表达式添加了y修饰符,叫做“粘连”(sticky)修饰符。

y修饰符的作用与g修饰符类似,也是全局匹配,后一次匹配都从上一次匹配成功的下一个位置开始。不同之处在于,g修饰符只要剩余位置中存在匹配就可,而y修饰符确保匹配必须从剩余的第一个位置开始,这也就是“粘连”的涵义。

进一步说,y修饰符号隐含了头部匹配的标志^

1
2
3
4
5
6
7
8
9
var s = 'aaa_aa_a';
var r1 = /a+/g;
var r2 = /a+/y;

r1.exec(s) // ["aaa"]
r2.exec(s) // ["aaa"]

r1.exec(s) // ["aa"]
r2.exec(s) // null

y修饰符相匹配,ES6的正则对象多了sticky属性,表示是否设置了y修饰符。

1
2
var r = /hello\d/y;
r.sticky // true

flags属性

ES6为正则表达式新增了flags属性,会返回正则表达式的修饰符。

1
2
3
4
5
6
7
8
9
// ES5的source属性
// 返回正则表达式的正文
/abc/ig.source
// "abc"

// ES6的flags属性
// 返回正则表达式的修饰符
/abc/ig.flags
// 'gi'

RegExp.escape()

字符串必须转义,才能作为正则模式

1
2
3
4
5
6
7
function escapeRegExp(str) {
return str.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g, '\\$&');
}

let str = '/path/to/resource.html?search=query';
escapeRegExp(str)
// "\/path\/to\/resource\.html\?search=query"

用字符串生成正则匹配模式:

1
2
3
4
5
6
7
8
RegExp.escape('The Quick Brown Fox');
// "The Quick Brown Fox"

RegExp.escape('Buy it. use it. break it. fix it.');
// "Buy it\. use it\. break it\. fix it\."

RegExp.escape('(*.*)');
// "\(\*\.\*\)"

s 修饰符:dotAll 模式

正则表达式中,点(.)是一个特殊字符,代表任意的单个字符,但是行终止符(line terminator character)除外。

以下四个字符属于”行终止符“。

  • U+000A 换行符(\n)
  • U+000D 回车符(\r)
  • U+2028 行分隔符(line separator)
  • U+2029 段分隔符(paragraph separator)
1
2
/foo.bar/.test('foo\nbar')
// false

现在有一个提案,引入/s修饰符,使得.可以匹配任意单个字符。

1
/foo.bar/s.test('foo\nbar') // true

数值的扩展

二进制和八进制表示法

ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示。

1
2
0b111110111 === 503 // true
0o767 === 503 // true

如果要将0b0o前缀的字符串数值转为十进制,要使用Number方法。

1
2
Number('0b111')  // 7
Number('0o10') // 8

Number.isFinite(), Number.isNaN()

ES6在Number对象上,新提供了Number.isFinite()Number.isNaN()两个方法。

Number.isFinite()用来检查一个数值是否为有限的(finite)。

Number.isNaN()用来检查一个值是否为NaN

它们与传统的全局方法isFinite()isNaN()的区别在于,传统方法先调用Number()将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,非数值一律返回false

Number.parseInt(), Number.parseFloat()

ES6将全局方法parseInt()parseFloat(),移植到Number对象上面,行为完全保持不变。

1
2
3
4
5
6
7
// ES5的写法
parseInt('12.34') // 12
parseFloat('123.45#') // 123.45

// ES6的写法
Number.parseInt('12.34') // 12
Number.parseFloat('123.45#') // 123.45

Number.isInteger()

Number.isInteger()用来判断一个值是否为整数。需要注意的是,在JavaScript内部,整数和浮点数是同样的储存方法,所以3和3.0被视为同一个值。

1
2
3
4
5
Number.isInteger(25) // true
Number.isInteger(25.0) // true
Number.isInteger(25.1) // false
Number.isInteger("15") // false
Number.isInteger(true) // false

Number.EPSILON

ES6在Number对象上面,新增一个极小的常量Number.EPSILON

引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。

但是如果这个误差能够小于Number.EPSILON,我们就可以认为得到了正确结果。

因此,Number.EPSILON的实质是一个可以接受的误差范围。

1
2
3
4
5
6
Number.EPSILON
// 2.220446049250313e-16
Number.EPSILON.toFixed(20)
// '0.00000000000000022204'
5.551115123125783e-17 < Number.EPSILON
// true

安全整数和Number.isSafeInteger()

JavaScript能够准确表示的整数范围在-2^532^53之间(不含两个端点),超过这个范围,无法精确表示这个值。

1
2
3
4
5
6
7
Math.pow(2, 53) // 9007199254740992

9007199254740992 // 9007199254740992
9007199254740993 // 9007199254740992

Math.pow(2, 53) === Math.pow(2, 53) + 1
// true

ES6引入了Number.MAX_SAFE_INTEGERNumber.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限。Number.isSafeInteger()则是用来判断一个整数是否落在这个范围之内。

1
2
3
4
5
6
7
8
9
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1
// true
Number.MAX_SAFE_INTEGER === 9007199254740991
// true

Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER
// true
Number.MIN_SAFE_INTEGER === -9007199254740991
// true

Math对象的扩展

Math.trunc()

Math.trunc方法用于去除一个数的小数部分,返回整数部分。

1
2
3
4
5
Math.trunc(4.1) // 4
Math.trunc(4.9) // 4
Math.trunc(-4.1) // -4
Math.trunc(-4.9) // -4
Math.trunc(-0.1234) // -0

Math.sign()

Math.sign方法用来判断一个数到底是正数、负数、还是零。

它会返回五种值。

  • 参数为正数,返回+1;
  • 参数为负数,返回-1;
  • 参数为0,返回0;
  • 参数为-0,返回-0;
  • 其他值,返回NaN。

Math.cbrt()

Math.cbrt方法用于计算一个数的立方根。

Math.clz32()

JavaScript的整数使用32位二进制形式表示,Math.clz32方法返回一个数的32位无符号整数形式有多少个前导0。

Math.imul()

Math.imul方法返回两个数以32位带符号整数形式相乘的结果,返回的也是一个32位的带符号整数。

大多数情况下,Math.imul(a, b)a * b的结果是相同的,之所以需要部署这个方法,是因为JavaScript有精度限制,超过2的53次方的值无法精确表示。这就是说,对于那些很大的数的乘法,低位数值往往都是不精确的,Math.imul方法可以返回正确的低位数值。

Math.signbit()

Math.sign()用来判断一个值的正负,但是如果参数是-0,它会返回-0。

引入了Math.signbit()方法判断一个数的符号位是否设置了。

1
2
3
4
Math.signbit(2) //false
Math.signbit(-2) //true
Math.signbit(0) //false
Math.signbit(-0) //true

数组的扩展

Array.from()

Array.from方法用于将两类对象转为真正的数组:类似数组的对象(array-like object)和可遍历(iterable)的对象(包括ES6新增的数据结构Set和Map)。

实际应用中,常见的类似数组的对象是DOM操作返回的NodeList集合,以及函数内部的arguments对象。Array.from都可以将它们转为真正的数组。

1
2
3
4
5
6
7
8
9
10
11
// NodeList对象
let ps = document.querySelectorAll('p');
Array.from(ps).forEach(function (p) {
console.log(p);
});

// arguments对象
function foo() {
var args = Array.from(arguments);
// ...
}

上面代码中,querySelectorAll方法返回的是一个类似数组的对象,只有将这个对象转为真正的数组,才能使用forEach方法

Array.of()

Array.of方法用于将一组值,转换为数组。

1
2
3
Array.of(3, 11, 8) // [3,11,8]
Array.of(3) // [3]
Array.of(3).length // 1

这个方法的主要目的,是弥补数组构造函数Array()的不足。因为参数个数的不同,会导致Array()的行为有差异。

1
2
3
Array() // []
Array(3) // [, , ,]
Array(3, 11, 8) // [3, 11, 8]

数组实例的copyWithin()

数组实例的copyWithin方法,在当前数组内部,将指定位置的成员复制到其他位置(会覆盖原有成员),然后返回当前数组。也就是说,使用这个方法,会修改当前数组。

数组实例的find()和findIndex()

数组实例的find方法,用于找出第一个符合条件的数组成员。它的参数是一个回调函数,所有数组成员依次执行该回调函数,直到找出第一个返回值为true的成员,然后返回该成员。如果没有符合条件的成员,则返回undefined

数组实例的findIndex方法的用法与find方法非常类似,返回第一个符合条件的数组成员的位置,如果所有成员都不符合条件,则返回-1

这两个方法都可以发现NaN,弥补了数组的IndexOf方法的不足。

数组实例的entries(),keys()和values()

ES6提供三个新的方法——entries()keys()values()——用于遍历数组。它们都返回一个遍历器对象(详见《Iterator》一章),可以用for...of循环进行遍历,唯一的区别是keys()是对键名的遍历、values()是对键值的遍历,entries()是对键值对的遍历。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
for (let index of ['a', 'b'].keys()) {
console.log(index);
}
// 0
// 1

for (let elem of ['a', 'b'].values()) {
console.log(elem);
}
// 'a'
// 'b'

for (let [index, elem] of ['a', 'b'].entries()) {
console.log(index, elem);
}
// 0 "a"
// 1 "b"

函数的扩展

函数参数的默认值

在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法。

1
2
3
4
5
6
7
8
function log(x, y) {
y = y || 'World';
console.log(x, y);
}

log('Hello') // Hello World
log('Hello', 'China') // Hello China
log('Hello', '') // Hello World

ES6 允许为函数的参数设置默认值,即直接写在参数定义的后面。

1
2
3
4
5
6
7
function log(x, y = 'World') {
console.log(x, y);
}

log('Hello') // Hello World
log('Hello', 'China') // Hello China
log('Hello', '') // Hello

通常情况下,定义了默认值的参数,应该是函数的尾参数。因为这样比较容易看出来,到底省略了哪些参数。如果非尾部的参数设置默认值,实际上这个参数是没法省略的。

函数的 length 属性

指定了默认值以后,函数的length属性,将返回没有指定默认值的参数个数。也就是说,指定了默认值后,length属性将失真。

rest参数

ES6 引入 rest 参数(形式为“…变量名”),用于获取函数的多余参数,这样就不需要使用arguments对象了。rest 参数搭配的变量是一个数组,该变量将多余的参数放入数组中。

1
2
3
4
5
6
7
8
9
10
11
function add(...values) {
let sum = 0;

for (var val of values) {
sum += val;
}

return sum;
}

add(2, 5, 3) // 10

扩展运算符

扩展运算符(spread)是三个点(...)。它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列。

1
2
3
4
5
6
7
8
console.log(...[1, 2, 3])
// 1 2 3

console.log(1, ...[2, 3, 4], 5)
// 1 2 3 4 5

[...document.querySelectorAll('div')]
// [<div>, <div>, <div>]
扩展运算符的应用

合并数组

1
2
3
4
// ES5
[1, 2].concat(more)
// ES6
[1, 2, ...more]

与解构赋值结合

1
2
3
4
// ES5
a = list[0], rest = list.slice(1)
// ES6
[a, ...rest] = list

字符串

扩展运算符还可以将字符串转为真正的数组。

1
2
[...'hello']
// [ "h", "e", "l", "l", "o" ]

上面代码的第一种写法,JavaScript会将32位Unicode字符,识别为2个字符,采用扩展运算符就没有这个问题。因此,正确返回字符串长度的函数

凡是涉及到操作32位Unicode字符的函数,都有这个问题。因此,最好都用扩展运算符改写。

1
2
3
4
5
6
7
let str = 'x\uD83D\uDE80y';

str.split('').reverse().join('')
// 'y\uDE80\uD83Dx'

[...str].reverse().join('')
// 'y\uD83D\uDE80x'

实现了Iterator接口的对象

任何Iterator接口的对象,都可以用扩展运算符转为真正的数组。

1
2
var nodeList = document.querySelectorAll('div');
var array = [...nodeList];

箭头函数

ES6允许使用“箭头”(=>)定义函数

1
var f = v => v;

上面的箭头函数等同于:

1
2
3
var f = function(v) {
return v;
};

如果箭头函数不需要参数或需要多个参数,就使用一个圆括号代表参数部分。

如果箭头函数的代码块部分多于一条语句,就要使用大括号将它们括起来,并且使用return语句返回。

1
var sum = (num1, num2) => { return num1 + num2; }

如果箭头函数直接返回一个对象,必须在对象外面加上括号。

1
var getTempItem = id => ({ id: id, name: "Temp" });

箭头函数有几个使用注意点。

(1)函数体内的this对象,就是定义时所在的对象,而不是使用时所在的对象。

(2)不可以当作构造函数,也就是说,不可以使用new命令,否则会抛出一个错误。

(3)不可以使用arguments对象,该对象在函数体内不存在。如果要用,可以用Rest参数代替。

(4)不可以使用yield命令,因此箭头函数不能用作Generator函数。

箭头函数转成ES5的代码如下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// ES6
function foo() {
setTimeout(() => {
console.log('id:', this.id);
}, 100);
}

// ES5
function foo() {
var _this = this;

setTimeout(function () {
console.log('id:', _this.id);
}, 100);
}

绑定 this

箭头函数可以绑定this对象,大大减少了显式绑定this对象的写法(call、apply、bind)。但是,箭头函数并不适用于所有场合,所以ES7提出了“函数绑定”(function bind)运算符,用来取代call、apply、bind调用。虽然该语法还是ES7的一个提案,但是Babel转码器已经支持。

1
2
3
4
5
6
7
foo::bar;
// 等同于
bar.bind(foo);

foo::bar(...arguments);
// 等同于
bar.apply(foo, arguments);

尾调用优化

什么是尾调用?

尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。

1
2
3
function f(x){
return g(x);
}
尾调用优化

尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到A,B的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。

尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。

尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归。

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

还有一个比较著名的例子,就是计算fibonacci 数列,也能充分说明尾递归优化的重要性

如果是非尾递归的fibonacci 递归方法

1
2
3
4
5
6
7
8
9
10
function Fibonacci (n) {
if ( n <= 1 ) {return 1};

return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10); // 89
// Fibonacci(100)
// Fibonacci(500)
// 堆栈溢出了

如果我们使用尾递归优化过的fibonacci 递归算法

1
2
3
4
5
6
7
8
9
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};

return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity

尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。

函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function currying(fn, n) {
return function (m) {
return fn.call(this, m, n);
};
}

function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

ES6的尾调用优化只在严格模式下开启,正常模式是无效的。

对象的扩展

属性的简洁表示法

ES6允许直接写入变量和函数,作为对象的属性和方法。这样的书写更加简洁。

1
2
3
4
5
6
var foo = 'bar';
var baz = {foo};
baz // {foo: "bar"}

// 等同于
var baz = {foo: foo};

除了属性简写,方法也可以简写。

1
2
3
4
5
6
7
8
9
10
11
12
13
var o = {
method() {
return "Hello!";
}
};

// 等同于

var o = {
method: function() {
return "Hello!";
}
};

属性名表达式

ES6 允许字面量定义对象时,用方法二(表达式)作为对象的属性名,即把表达式放在方括号内。

1
2
3
4
5
6
7
8
9
10
var lastWord = 'last word';

var a = {
'first word': 'hello',
[lastWord]: 'world'
};

a['first word'] // "hello"
a[lastWord] // "world"
a['last word'] // "world"

Object.is()

ES5比较两个值是否相等,只有两个运算符:相等运算符(==)和严格相等运算符(===)。它们都有缺点,前者会自动转换数据类型,后者的NaN不等于自身,以及+0等于-0。JavaScript缺乏一种运算,在所有环境中,只要两个值是一样的,它们就应该相等。

ES6提出“Same-value equality”(同值相等)算法,用来解决这个问题。Object.is就是部署这个算法的新方法。它用来比较两个值是否严格相等,与严格比较运算符(===)的行为基本一致。

1
2
3
4
5
+0 === -0 //true
NaN === NaN // false

Object.is(+0, -0) // false
Object.is(NaN, NaN) // true

Object.assign()

Object.assign方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target)。

1
2
3
4
5
6
7
var target = { a: 1 };

var source1 = { b: 2 };
var source2 = { c: 3 };

Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}

Object.assign方法实行的是浅拷贝,而不是深拷贝。也就是说,如果源对象某个属性的值是对象,那么目标对象拷贝得到的是这个对象的引用。

属性的遍历

ES6一共有5种方法可以遍历对象的属性。

(1)for…in

for…in循环遍历对象自身的和继承的可枚举属性(不含Symbol属性)。

(2)Object.keys(obj)

Object.keys返回一个数组,包括对象自身的(不含继承的)所有可枚举属性(不含Symbol属性)。

(3)Object.getOwnPropertyNames(obj)

Object.getOwnPropertyNames返回一个数组,包含对象自身的所有属性(不含Symbol属性,但是包括不可枚举属性)。

(4)Object.getOwnPropertySymbols(obj)

Object.getOwnPropertySymbols返回一个数组,包含对象自身的所有Symbol属性。

(5)Reflect.ownKeys(obj)

Reflect.ownKeys返回一个数组,包含对象自身的所有属性,不管是属性名是Symbol或字符串,也不管是否可枚举。

__proto__属性,Object.setPrototypeOf(),Object.getPrototypeOf()

__proto__前后的双下划线,说明它本质上是一个内部属性,而不是一个正式的对外的 API,只是由于浏览器广泛支持,才被加入了 ES6。标准明确规定,只有浏览器必须部署这个属性,其他运行环境不一定需要部署,而且新的代码最好认为这个属性是不存在的。因此,无论从语义的角度,还是从兼容性的角度,都不要使用这个属性,而是使用下面的Object.setPrototypeOf()(写操作)、Object.getPrototypeOf()(读操作)、Object.create()(生成操作)代替。

在实现上,__proto__调用的是Object.prototype.__proto__

Object.keys(),Object.values(),Object.entries()

ES5 引入了Object.keys方法,返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键名

ES2017 引入了跟Object.keys配套的Object.valuesObject.entries,作为遍历一个对象的补充手段,供for...of循环使用。

Object.getOwnPropertyDescriptors()

ES5有一个Object.getOwnPropertyDescriptor方法,返回某个对象属性的描述对象(descriptor)。

ES2017 引入了Object.getOwnPropertyDescriptors方法,返回指定对象所有自身属性(非继承属性)的描述对象。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
const obj = {
foo: 123,
get bar() { return 'abc' }
};

Object.getOwnPropertyDescriptors(obj)
// { foo:
// { value: 123,
// writable: true,
// enumerable: true,
// configurable: true },
// bar:
// { get: [Function: bar],
// set: undefined,
// enumerable: true,
// configurable: true } }

Symbol

ES5的对象属性名都是字符串,这容易造成属性名的冲突。比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin模式),新方法的名字就有可能与现有方法产生冲突。如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是ES6引入Symbol的原因。

ES6引入了一种新的原始数据类型Symbol,表示独一无二的值。它是JavaScript语言的第七种数据类型,前六种是:Undefined、Null、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的Symbol类型。凡是属性名属于Symbol类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

1
2
3
4
let s = Symbol();

typeof s
// "symbol"

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的Symbol是一个原始类型的值,不是对象。

作为属性名的Symbol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
var mySymbol = Symbol();

// 第一种写法
var a = {};
a[mySymbol] = 'Hello!';

// 第二种写法
var a = {
[mySymbol]: 'Hello!'
};

// 第三种写法
var a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' });

// 以上写法都得到同样结果
a[mySymbol] // "Hello!"

注意,Symbol值作为对象属性名时,不能用点运算符。

1
2
3
4
5
6
var mySymbol = Symbol();
var a = {};

a.mySymbol = 'Hello!';
a[mySymbol] // undefined
a['mySymbol'] // "Hello!"

属性名的遍历

Symbol 作为属性名,该属性不会出现在for...infor...of循环中,也不会被Object.keys()Object.getOwnPropertyNames()JSON.stringify()返回。但是,它也不是私有属性,有一个Object.getOwnPropertySymbols方法,可以获取指定对象的所有 Symbol 属性名。

另一个新的API,Reflect.ownKeys方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

1
2
3
4
5
6
7
8
let obj = {
[Symbol('my_key')]: 1,
enum: 2,
nonEnum: 3
};

Reflect.ownKeys(obj)
// ["enum", "nonEnum", Symbol(my_key)]

由于以 Symbol 值作为名称的属性,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

Symbol.for(),Symbol.keyFor()

有时,我们希望重新使用同一个Symbol值,Symbol.for方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的Symbol值。如果有,就返回这个Symbol值,否则就新建并返回一个以该字符串为名称的Symbol值。

模块的 Singleton 模式

Singleton模式指的是调用一个类,任何时候返回的都是同一个实例。使用 Symbol.for 可以实现。

Set和Map数据结构

Set

ES6 提供了新的数据结构 Set。它类似于数组,但是成员的值都是唯一的,没有重复的值。

Set结构的实例有四个遍历方法,可以用于遍历成员。

  • keys():返回键名的遍历器
  • values():返回键值的遍历器
  • entries():返回键值对的遍历器
  • forEach():使用回调函数遍历每个成员

扩展运算符和Set结构相结合,就可以去除数组的重复成员。

1
2
3
let arr = [3, 5, 2, 2, 5, 5];
let unique = [...new Set(arr)];
// [3, 5, 2]

WeakSet

WeakSet结构与Set类似,也是不重复的值的集合。但是,它与Set有两个区别。

首先,WeakSet的成员只能是对象,而不能是其他类型的值。

其次,WeakSet中的对象都是弱引用,即垃圾回收机制不考虑WeakSet对该对象的引用,也就是说,如果其他对象都不再引用该对象,那么垃圾回收机制会自动回收该对象所占用的内存,不考虑该对象还存在于WeakSet之中。这个特点意味着,无法引用WeakSet的成员,因此WeakSet是不可遍历的。

WeakSet不能遍历,是因为成员都是弱引用,随时可能消失,遍历机制无法保证成员的存在,很可能刚刚遍历结束,成员就取不到了。WeakSet的一个用处,是储存DOM节点,而不用担心这些节点从文档移除时,会引发内存泄漏。

Map

JavaScript的对象(Object),本质上是键值对的集合(Hash结构),但是传统上只能用字符串当作键。这给它的使用带来了很大的限制。

为了解决这个问题,ES6提供了Map数据结构。它类似于对象,也是键值对的集合,但是“键”的范围不限于字符串,各种类型的值(包括对象)都可以当作键。也就是说,Object结构提供了“字符串—值”的对应,Map结构提供了“值—值”的对应,是一种更完善的Hash结构实现。如果你需要“键值对”的数据结构,Map比Object更合适。

Map原生提供三个遍历器生成函数和一个遍历方法。

  • keys():返回键名的遍历器。
  • values():返回键值的遍历器。
  • entries():返回所有成员的遍历器。
  • forEach():遍历Map的所有成员。

需要特别注意的是,Map的遍历顺序就是插入顺序。

Map转为数组

前面已经提过,Map转为数组最方便的方法,就是使用扩展运算符(…)

1
2
3
let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
[...myMap]
// [ [ true, 7 ], [ { foo: 3 }, [ 'abc' ] ] ]

将数组转入Map构造函数,就可以转为Map。

1
2
new Map([[true, 7], [{foo: 3}, ['abc']]])
// Map {true => 7, Object {foo: 3} => ['abc']}

WeakMap

WeakMap结构与Map结构基本类似,唯一的区别是它只接受对象作为键名(null除外),不接受其他类型的值作为键名,而且键名所指向的对象,不计入垃圾回收机制。

Proxy

Proxy 用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程。

Proxy 可以理解成,在目标对象之前架设一层“拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理,用在这里表示由它来“代理”某些操作,可以译为“代理器”。

1
2
3
4
5
6
7
8
9
10
var obj = new Proxy({}, {
get: function (target, key, receiver) {
console.log(`getting ${key}!`);
return Reflect.get(target, key, receiver);
},
set: function (target, key, value, receiver) {
console.log(`setting ${key}!`);
return Reflect.set(target, key, value, receiver);
}
});

上面代码对一个空对象架设了一层拦截,重定义了属性的读取(get)和设置(set)行为。这里暂时先不解释具体的语法,只看运行结果。对设置了拦截行为的对象obj,去读写它的属性,就会得到下面的结果。

1
2
3
4
5
6
obj.count = 1
// setting count!
++obj.count
// getting count!
// setting count!
// 2

Reflect

Reflect对象与Proxy对象一样,也是 ES6 为了操作对象而提供的新 API。Reflect对象的设计目的有这样几个。

(1) 将Object对象的一些明显属于语言内部的方法(比如Object.defineProperty),放到Reflect对象上。现阶段,某些方法同时在Object和Reflect对象上部署,未来的新方法将只部署在Reflect对象上。也就是说,从Reflect对象上可以拿到语言内部的方法。

(2) 修改某些Object方法的返回结果,让其变得更合理。比如,Object.defineProperty(obj, name, desc)在无法定义属性时,会抛出一个错误,而Reflect.defineProperty(obj, name, desc)则会返回false。

(3) 让Object操作都变成函数行为。某些Object操作是命令式,比如name in obj和delete obj[name],而Reflect.has(obj, name)和Reflect.deleteProperty(obj, name)让它们变成了函数行为。

(4)Reflect对象的方法与Proxy对象的方法一一对应,只要是Proxy对象的方法,就能在Reflect对象上找到对应的方法。这就让Proxy对象可以方便地调用对应的Reflect方法,完成默认行为,作为修改行为的基础。也就是说,不管Proxy怎么修改默认行为,你总可以在Reflect上获取默认行为。

Promise 对象

Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大。它由社区最早提出和实现,ES6将其写进了语言标准,统一了用法,原生提供了Promise对象。

如果某些事件不断地反复发生,一般来说,使用 stream 模式是比部署Promise更好的选择。

基本用法

1
2
3
4
5
6
7
8
9
var promise = new Promise(function(resolve, reject) {
// ... some code

if (/* 异步操作成功 */){
resolve(value);
} else {
reject(error);
}
});

Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolvereject。它们是两个函数,由JavaScript引擎提供,不用自己部署。

Promise实例生成以后,可以用then方法分别指定Resolved状态和Reject状态的回调函数。

1
2
3
4
5
promise.then(function(value) {
// success
}, function(error) {
// failure
});

可以使用 Promise 异步加载图片,进行 Ajax 处理等。

下面是异步加载图片的例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function loadImageAsync(url) {
return new Promise(function(resolve, reject) {
var image = new Image();

image.onload = function() {
resolve(image);
};

image.onerror = function() {
reject(new Error('Could not load image at ' + url));
};

image.src = url;
});
}

下面是一个用Promise对象实现的Ajax操作的例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
var getJSON = function(url) {
var promise = new Promise(function(resolve, reject){
var client = new XMLHttpRequest();
client.open("GET", url);
client.onreadystatechange = handler;
client.responseType = "json";
client.setRequestHeader("Accept", "application/json");
client.send();

function handler() {
if (this.readyState !== 4) {
return;
}
if (this.status === 200) {
resolve(this.response);
} else {
reject(new Error(this.statusText));
}
};
});

return promise;
};

getJSON("/posts.json").then(function(json) {
console.log('Contents: ' + json);
}, function(error) {
console.error('出错了', error);
});

Promise.prototype.then()

then方法返回的是一个新的Promise实例(注意,不是原来那个Promise实例)。因此可以采用链式写法,即then方法后面再调用另一个then方法。

Promise.prototype.catch()

Promise.prototype.catch方法是.then(null, rejection)的别名,用于指定发生错误时的回调函数。

一般来说,不要在then方法里面定义Reject状态的回调函数(即then的第二个参数),总是使用catch方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// bad
promise
.then(function(data) {
// success
}, function(err) {
// error
});

// good
promise
.then(function(data) { //cb
// success
})
.catch(function(err) {
// error
});

上面代码中,第二种写法要好于第一种写法,理由是第二种写法可以捕获前面then方法执行中的错误,也更接近同步的写法(try/catch)。因此,建议总是使用catch方法,而不使用then方法的第二个参数。

缺点:跟传统的try/catch代码块不同的是,如果没有使用catch方法指定错误处理的回调函数,Promise对象抛出的错误不会传递到外层代码,即不会有任何反应。

Promise.all()

Promise.all方法用于将多个Promise实例,包装成一个新的Promise实例。

1
var p = Promise.all([p1, p2, p3]);

(1)只有p1、p2、p3的状态都变成fulfilled,p的状态才会变成fulfilled,此时p1、p2、p3的返回值组成一个数组,传递给p的回调函数。

(2)只要p1、p2、p3之中有一个被rejected,p的状态就变成rejected,此时第一个被reject的实例的返回值,会传递给p的回调函数。

Promise.race()

Promise.race方法同样是将多个Promise实例,包装成一个新的Promise实例。

上面代码中,只要p1、p2、p3之中有一个实例率先改变状态,p的状态就跟着改变。那个率先改变的 Promise 实例的返回值,就传递给p的回调函数。

Promise.resolve()

有时需要将现有对象转为Promise对象,Promise.resolve方法就起到这个作用。

done()

Promise对象的回调链,不管以then方法或catch方法结尾,要是最后一个方法抛出错误,都有可能无法捕捉到(因为Promise内部的错误不会冒泡到全局)。因此,我们可以提供一个done方法,总是处于回调链的尾端,保证抛出任何可能出现的错误。

finally()

finally方法用于指定不管Promise对象最后状态如何,都会执行的操作。它与done方法的最大区别,它接受一个普通的回调函数作为参数,该函数不管怎样都必须执行。

Iterator和for…of循环

Iterator(遍历器)的概念

遍历器(Iterator)就是这样一种机制。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据结构的所有成员)。

Iterator的作用有三个:一是为各种数据结构,提供一个统一的、简便的访问接口;二是使得数据结构的成员能够按某种次序排列;三是ES6创造了一种新的遍历命令for...of循环,Iterator接口主要供for...of消费。

数据结构的默认Iterator接口

Iterator接口的目的,就是为所有数据结构,提供了一种统一的访问机制,即for...of循环(详见下文)。当使用for...of循环遍历某种数据结构时,该循环会自动去寻找Iterator接口。

在ES6中,有三类数据结构原生具备Iterator接口:数组、某些类似数组的对象(字符串,rguments对象、DOM NodeList 对象,Generator 对象)、Set和Map结构。

对于字符串来说,for...of循环还有一个特点,就是会正确识别32位UTF-16字符。

数组

for...of循环可以代替数组实例的forEach方法。

JavaScript原有的for…in循环,只能获得对象的键名,不能直接获取键值。ES6提供for…of循环,允许遍历获得键值。

1
2
3
4
5
6
7
8
9
var arr = ['a', 'b', 'c', 'd'];

for (let a in arr) {
console.log(a); // 0 1 2 3
}

for (let a of arr) {
console.log(a); // a b c d
}
Set和Map结构

遍历的顺序是按照各个成员被添加进数据结构的顺序。其次,Set结构遍历时,返回的是一个值,而Map结构遍历时,返回的是一个数组,该数组的两个成员分别为当前Map成员的键名和键值。

Generator 函数的语法

Generator 函数是 ES6 提供的一种异步编程解决方案

Generator 函数有多种理解角度。从语法上,首先可以把它理解成,Generator 函数是一个状态机,封装了多个内部状态。

执行 Generator 函数会返回一个遍历器对象,也就是说,Generator 函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历 Generator 函数内部的每一个状态。

形式上,Generator 函数是一个普通函数,但是有两个特征。一是,function关键字与函数名之间有一个星号(*);二是,函数体内部使用yield语句,定义不同的内部状态(yield在英语里的意思就是“产出”)。

yield语句不能用在普通函数中,否则会报错。

1
2
3
4
5
6
7
function* helloWorldGenerator() {
yield 'hello';
yield 'world';
return 'ending';
}

var hw = helloWorldGenerator();

上面代码定义了一个Generator函数helloWorldGenerator,它内部有两个yield语句“hello”和“world”,即该函数有三个状态:hello,world和return语句(结束执行)。

每次调用next方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇到下一个yield语句(或return语句)为止。换言之,Generator函数是分段执行的,yield语句是暂停执行的标记,而next方法可以恢复执行。

与Iterator接口的关系

由于Generator函数就是遍历器生成函数,因此可以把Generator赋值给对象的Symbol.iterator属性,从而使得该对象具有Iterator接口。

Generator.prototype.return()

Generator函数返回的遍历器对象,还有一个return方法,可以返回给定的值,并且终结遍历Generator函数。

第一次使用 next(),就从函数头运行到第一个 yield

1
2
3
4
5
6
7
8
9
10
11
function* gen() {
yield 1;
yield 2;
yield 3;
}

var g = gen();

g.next() // { value: 1, done: false }
g.return('foo') // { value: "foo", done: true }
g.next() // { value: undefined, done: true }

yield* 语句

用到yield*语句,用来在一个 Generator 函数里面执行另一个 Generator 函数。

应用

异步操作的同步化表达

Generator函数的暂停执行的效果,意味着可以把异步操作写在yield语句里面,等到调用next方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在yield语句下面,反正要等到调用next方法时再执行。

通过Generator函数逐行读取文本文件

1
2
3
4
5
6
7
8
9
10
function* numbers() {
let file = new FileReader("numbers.txt");
try {
while(!file.eof) {
yield parseInt(file.readLine(), 10);
}
} finally {
file.close();
}
}
控制流管理

利用for...of循环会自动依次执行yield命令的特性,提供一种更一般的控制流管理的方法。

1
2
3
4
5
6
7
8
let steps = [step1Func, step2Func, step3Func];

function *iterateSteps(steps){
for (var i=0; i< steps.length; i++){
var step = steps[i];
yield step();
}
}
部署Iterator接口

利用Generator函数,可以在任意对象上部署Iterator接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function* iterEntries(obj) {
let keys = Object.keys(obj);
for (let i=0; i < keys.length; i++) {
let key = keys[i];
yield [key, obj[key]];
}
}

let myObj = { foo: 3, bar: 7 };

for (let [key, value] of iterEntries(myObj)) {
console.log(key, value);
}

// foo 3
// bar 7

Generator 函数的异步应用

基本概念

异步

所谓”异步”,简单说就是一个任务不是连续完成的,可以理解成该任务被人为分成两段,先执行第一段,然后转而执行其他任务,等做好了准备,再回过头执行第二段。

回调函数

JavaScript 语言对异步编程的实现,就是回调函数。所谓回调函数,就是把任务的第二段单独写在一个函数里面,等到重新执行这个任务的时候,就直接调用这个函数。回调函数的英语名字callback,直译过来就是”重新调用”。

Promise

回调函数本身并没有问题,它的问题出现在多个回调函数嵌套。假定读取A文件之后,再读取B文件,代码如下。

1
2
3
4
5
fs.readFile(fileA, 'utf-8', function (err, data) {
fs.readFile(fileB, 'utf-8', function (err, data) {
// ...
});
});

不难想象,如果依次读取两个以上的文件,就会出现多重嵌套。代码不是纵向发展,而是横向发展,很快就会乱成一团,无法管理。因为多个异步操作形成了强耦合,只要有一个操作需要修改,它的上层回调函数和下层回调函数,可能都要跟着修改。这种情况就称为”回调函数地狱”(callback hell)。

Promise 对象就是为了解决这个问题而提出的。它不是新的语法功能,而是一种新的写法,允许将回调函数的嵌套,改成链式调用。采用 Promise,连续读取多个文件,写法如下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
var readFile = require('fs-readfile-promise');

readFile(fileA)
.then(function (data) {
console.log(data.toString());
})
.then(function () {
return readFile(fileB);
})
.then(function (data) {
console.log(data.toString());
})
.catch(function (err) {
console.log(err);
});

Promise 的最大问题是代码冗余,原来的任务被 Promise 包装了一下,不管什么操作,一眼看去都是一堆then,原来的语义变得很不清楚。

Generator 函数

协程

传统的编程语言,早有异步编程的解决方案(其实是多任务的解决方案)。其中有一种叫做”协程”(coroutine),意思是多个线程互相协作,完成异步任务。

1
2
3
4
5
function *asyncJob() {
// ...其他代码
var f = yield readFile(fileA);
// ...其他代码
}

上面代码的函数asyncJob是一个协程,它的奥妙就在其中的yield命令。它表示执行到此处,执行权将交给其他协程。也就是说,yield命令是异步两个阶段的分界线。

协程遇到yield命令就暂停,等到执行权返回,再从暂停的地方继续往后执行。它的最大优点,就是代码的写法非常像同步操作,如果去除yield命令,简直一模一样。

协程的 Generator 函数实现

Generator 函数是协程在 ES6 的实现,最大特点就是可以交出函数的执行权(即暂停执行)。

1
2
3
4
5
6
7
8
function* gen(x) {
var y = yield x + 2;
return y;
}

var g = gen(1);
g.next() // { value: 3, done: false }
g.next() // { value: undefined, done: true }

上面代码中,调用 Generator 函数,会返回一个内部指针(即遍历器)g。这是 Generator 函数不同于普通函数的另一个地方,即执行它不会返回结果,返回的是指针对象。调用指针g的next方法,会移动内部指针(即执行异步任务的第一段),指向第一个遇到的yield语句,上例是执行到x + 2为止。

Thunk 函数的自动流程管理

Thunk 函数真正的威力,在于可以自动执行 Generator 函数。

co 模块

co 模块是著名程序员 TJ Holowaychuk 于2013年6月发布的一个小工具,用于 Generator 函数的自动执行

async 函数

含义

async 函数是什么?一句话,它就是 Generator 函数的语法糖。

前文有一个 Generator 函数,依次读取两个文件。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
var fs = require('fs');

var readFile = function (fileName) {
return new Promise(function (resolve, reject) {
fs.readFile(fileName, function(error, data) {
if (error) reject(error);
resolve(data);
});
});
};

var gen = function* () {
var f1 = yield readFile('/etc/fstab');
var f2 = yield readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};

写成async函数,就是下面这样。

1
2
3
4
5
6
var asyncReadFile = async function () {
var f1 = await readFile('/etc/fstab');
var f2 = await readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};

一比较就会发现,async函数就是将 Generator 函数的星号(*)替换成async,将yield替换成await,仅此而已。

async函数对 Generator 函数的改进,体现在以下四点。

(1)内置执行器。

(2)更好的语义。

(3)更广的适用性。

(4)返回值是 Promise。

async 函数有多种使用形式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// 函数声明
async function foo() {}

// 函数表达式
const foo = async function () {};

// 对象的方法
let obj = { async foo() {} };
obj.foo().then(...)

// Class 的方法
class Storage {
constructor() {
this.cachePromise = caches.open('avatars');
}

async getAvatar(name) {
const cache = await this.cachePromise;
return cache.match(`/avatars/${name}.jpg`);
}
}

const storage = new Storage();
storage.getAvatar('jake').then(…);

// 箭头函数
const foo = async () => {};

Promise 对象的状态变

async函数返回的 Promise 对象,必须等到内部所有await命令后面的 Promise 对象执行完,才会发生状态改变,除非遇到return语句或者抛出错误。也就是说,只有async函数内部的异步操作执行完,才会执行then方法指定的回调函数。

1
2
3
4
5
6
7
async function getTitle(url) {
let response = await fetch(url);
let html = await response.text();
return html.match(/<title>([\s\S]+)<\/title>/i)[1];
}
getTitle('https://tc39.github.io/ecma262/').then(console.log)
// "ECMAScript 2017 Language Specification"

上面代码中,函数getTitle内部有三个操作:抓取网页、取出文本、匹配页面标题。只有这三个操作全部完成,才会执行then方法里面的console.log

Class

ES6提供了更接近传统语言的写法,引入了Class(类)这个概念,作为对象的模板。通过class关键字,可以定义类。基本上,ES6的class可以看作只是一个语法糖,它的绝大部分功能,ES5都可以做到,新的class写法只是让对象原型的写法更加清晰、更像面向对象编程的语法而已。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//定义类
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}

toString() {
return '(' + this.x + ', ' + this.y + ')';
}

[methodName]() {
// ...
}
}

typeof Point // "function"
Point === Point.prototype.constructor // true

构造函数的prototype属性,在ES6的“类”上面继续存在。事实上,类的所有方法都定义在类的prototype属性上面。

类的内部所有定义的方法,都是不可枚举的(non-enumerable)。

类的实例对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//定义类
class Point {

constructor(x, y) {
this.x = x;
this.y = y;
}

toString() {
return '(' + this.x + ', ' + this.y + ')';
}

}

var point = new Point(2, 3);

point.toString() // (2, 3)

point.hasOwnProperty('x') // true
point.hasOwnProperty('y') // true
point.hasOwnProperty('toString') // false
point.__proto__.hasOwnProperty('toString') // true

上面代码中,x和y都是实例对象point自身的属性(因为定义在this变量上),所以hasOwnProperty方法返回true,而toString是原型对象的属性(因为定义在Point类上),所以hasOwnProperty方法返回false。这些都与ES5的行为保持一致。

私有方法

私有方法是常见需求,但 ES6 不提供,只能通过变通方法模拟实现。

this的指向

类的方法内部如果含有this,它默认指向类的实例。

Class的继承

Class之间可以通过extends关键字实现继承,这比ES5的通过修改原型链实现继承,要清晰和方便很多。

1
2
3
4
5
6
7
8
9
10
class ColorPoint extends Point {
constructor(x, y, color) {
super(x, y); // 调用父类的constructor(x, y)
this.color = color;
}

toString() {
return this.color + ' ' + super.toString(); // 调用父类的toString()
}
}

子类必须在constructor方法中调用super方法,否则新建实例时会报错。这是因为子类没有自己的this对象,而是继承父类的this对象,然后对其进行加工。如果不调用super方法,子类就得不到this对象。

ES5的继承,实质是先创造子类的实例对象this,然后再将父类的方法添加到this上面(Parent.apply(this))。ES6的继承机制完全不同,实质是先创造父类的实例对象this(所以必须先调用super方法),然后再用子类的构造函数修改this

另一个需要注意的地方是,在子类的构造函数中,只有调用super之后,才可以使用this关键字,否则会报错。这是因为子类实例的构建,是基于对父类实例加工,只有super方法才能返回父类实例。

类的prototype属性和proto属性

大多数浏览器的ES5实现之中,每一个对象都有__proto__属性,指向对应的构造函数的prototype属性。Class作为构造函数的语法糖,同时有prototype属性和__proto__属性,因此同时存在两条继承链。

(1)子类的__proto__属性,表示构造函数的继承,总是指向父类。

(2)子类prototype属性的__proto__属性,表示方法的继承,总是指向父类的prototype属性。

1
2
3
4
5
6
7
8
class A {
}

class B extends A {
}

B.__proto__ === A // true
B.prototype.__proto__ === A.prototype // true

Extends 的继承目标

extends关键字后面可以跟多种类型的值。

super 关键字

super这个关键字,既可以当作函数使用,也可以当作对象使用。在这两种情况下,它的用法完全不同。

第一种情况,super作为函数调用时,代表父类的构造函数。ES6 要求,子类的构造函数必须执行一次super函数。

1
2
3
4
5
6
7
class A {}

class B extends A {
constructor() {
super();
}
}

第二种情况,super作为对象时,指向父类的原型对象。

实例的proto属性

子类实例的proto属性的proto属性,指向父类实例的proto属性。也就是说,子类的原型的原型,是父类的原型。

1
2
3
4
5
6
var p1 = new Point(2, 3);
var p2 = new ColorPoint(2, 3, 'red');

p2.__proto__ // Point {}
p2.__proto__ === p1.__proto__ // false
p2.__proto__.__proto__ === p1.__proto__ // true

原生构造函数的继承

原生构造函数是指语言内置的构造函数,通常用来生成数据结构。ECMAScript的原生构造函数大致有下面这些。

  • Boolean()
  • Number()
  • String()
  • Array()
  • Date()
  • Function()
  • RegExp()
  • Error()
  • Object()

以前,这些原生构造函数是无法继承的,比如,不能自己定义一个Array的子类。

ES5是先新建子类的实例对象this,再将父类的属性添加到子类上,由于父类的内部属性无法获取,导致无法继承原生的构造函数。

ES6允许继承原生构造函数定义子类,因为ES6是先新建父类的实例对象this,然后再用子类的构造函数修饰this,使得父类的所有行为都可以继承。下面是一个继承Array的例子。

1
2
3
4
5
6
7
8
9
10
11
12
class MyArray extends Array {
constructor(...args) {
super(...args);
}
}

var arr = new MyArray();
arr[0] = 12;
arr.length // 1

arr.length = 0;
arr[0] // undefined

Class的取值函数(getter)和存值函数(setter)

与ES5一样,在Class内部可以使用get和set关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class MyClass {
constructor() {
// ...
}
get prop() {
return 'getter';
}
set prop(value) {
console.log('setter: '+value);
}
}

let inst = new MyClass();

inst.prop = 123;
// setter: 123

inst.prop
// 'getter'

Class 的静态方法

类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。

Class的静态属性和实例属性

静态属性指的是Class本身的属性,即Class.propname,而不是定义在实例对象(this)上的属性。

1
2
3
4
5
class Foo {
}

Foo.prop = 1;
Foo.prop // 1

上面的写法为Foo类定义了一个静态属性prop。

目前,只有这种写法可行,因为ES6明确规定,Class内部只有静态方法,没有静态属性。

new.target属性

new是从构造函数生成实例的命令。ES6为new命令引入了一个new.target属性,(在构造函数中)返回new命令作用于的那个构造函数。如果构造函数不是通过new命令调用的,new.target会返回undefined,因此这个属性可以用来确定构造函数是怎么调用的。

Mixin模式的实现

将多个对象合成为一个类。使用的时候,只要继承这个类即可。

1
2
3
class DistributedEdit extends mix(Loggable, Serializable) {
// ...
}

修饰器(Decorator)

类的修饰

修饰器(Decorator)是一个函数,用来修改类的行为。这是ES7的一个提案,目前Babel转码器已经支持。

1
2
3
4
5
6
7
8
function testable(target) {
target.isTestable = true;
}

@testable
class MyTestableClass {}

console.log(MyTestableClass.isTestable) // true

基本上,修饰器的行为就是下面这样。

1
2
3
4
5
6
7
@decorator
class A {}

// 等同于

class A {}
A = decorator(A) || A;

方法的修饰

修饰器不仅可以修饰类,还可以修饰类的属性。

1
2
3
4
class Person {
@readonly
name() { return `${this.first} ${this.last}` }
}

上面代码中,修饰器readonly用来修饰“类”的name方法。

此时,修饰器函数一共可以接受三个参数,第一个参数是所要修饰的目标对象,第二个参数是所要修饰的属性名,第三个参数是该属性的描述对象。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function readonly(target, name, descriptor){
// descriptor对象原来的值如下
// {
// value: specifiedFunction,
// enumerable: false,
// configurable: true,
// writable: true
// };
descriptor.writable = false;
return descriptor;
}

readonly(Person.prototype, 'name', descriptor);
// 类似于
Object.defineProperty(Person.prototype, 'name', descriptor);

为什么修饰器不能用于函数?

修饰器只能用于类和类的方法,不能用于函数,因为存在函数提升。

core-decorators.js

core-decorators.js是一个第三方模块,提供了几个常见的修饰器,通过它可以更好地理解修饰器。

Module 的语法

在 ES6 之前,社区制定了一些模块加载方案,最主要的有 CommonJS 和 AMD 两种。前者用于服务器,后者用于浏览器。ES6 在语言标准的层面上,实现了模块功能,而且实现得相当简单,完全可以取代 CommonJS 和 AMD 规范,成为浏览器和服务器通用的模块解决方案。

ES6 模块的设计思想,是尽量的静态化,使得编译时就能确定模块的依赖关系,以及输入和输出的变量。CommonJS 和 AMD 模块,都只能在运行时确定这些东西。比如,CommonJS 模块就是对象,输入时必须查找对象属性。

1
2
3
4
5
6
7
8
// CommonJS模块
let { stat, exists, readFile } = require('fs');

// 等同于
let _fs = require('fs');
let stat = _fs.stat;
let exists = _fs.exists;
let readfile = _fs.readfile;

ES6 模块不是对象,而是通过export命令显式指定输出的代码,再通过import命令输入。

1
2
// ES6模块
import { stat, exists, readFile } from 'fs';

上面代码的实质是从fs模块加载3个方法,其他方法不加载。这种加载称为“编译时加载”或者静态加载,即 ES6 可以在编译时就完成模块加载,效率要比 CommonJS 模块的加载方式高。当然,这也导致了没法引用 ES6 模块本身,因为它不是对象。

export 命令

模块功能主要由两个命令构成:exportimportexport命令用于规定模块的对外接口,import命令用于输入其他模块提供的功能。

一个模块就是一个独立的文件。该文件内部的所有变量,外部无法获取。如果你希望外部能够读取模块内部的某个变量,就必须使用export关键字输出该变量。下面是一个 JS 文件,里面使用export命令输出变量。

1
2
3
4
5
6
// profile.js
export var firstName = 'Michael';
export var lastName = 'Jackson';
export var year = 1958;
// 或者
export {firstName, lastName, year};

export命令除了输出变量,还可以输出函数或类(class)

1
2
3
export function multiply(x, y) {
return x * y;
};

通常情况下,export输出的变量就是本来的名字,但是可以使用as关键字重命名。

1
2
3
4
5
6
7
8
function v1() { ... }
function v2() { ... }

export {
v1 as streamV1,
v2 as streamV2,
v2 as streamLatestVersion
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 报错
export 1;

// 报错
var m = 1;
export m;

// 写法一
export var m = 1;

// 写法二
var m = 1;
export {m};

// 写法三
var n = 1;
export {n as m};

export语句输出的接口,与其对应的值是动态绑定关系,即通过该接口,可以取到模块内部实时的值。这一点与 CommonJS 规范完全不同。CommonJS 模块输出的是值的缓存,不存在动态更新

export命令可以出现在模块的任何位置,只要处于模块顶层就可以。如果处于块级作用域内,就会报错,下一节的import命令也是如此。

import 命令

使用export命令定义了模块的对外接口以后,其他 JS 文件就可以通过import命令加载这个模块。

1
2
3
4
5
6
7
8
9
// main.js
import {firstName, lastName, year} from './profile';

function setName(element) {
element.textContent = firstName + ' ' + lastName;
}

//
import { lastName as surname } from './profile';

上面代码的import命令,用于加载profile.js文件,并从中输入变量。import命令接受一对大括号,里面指定要从其他模块导入的变量名。大括号里面的变量名,必须与被导入模块(profile.js)对外接口的名称相同。

由于import是静态执行,所以不能使用表达式和变量,这些只有在运行时才能得到结果的语法结构。

如果多次重复执行同一句import语句,那么只会执行一次,而不会执行多次。

模块的整体加载

除了指定加载某个输出值,还可以使用整体加载,即用星号(*)指定一个对象,所有输出值都加载在这个对象上面。

1
2
3
4
import * as circle from './circle';

console.log('圆面积:' + circle.area(4));
console.log('圆周长:' + circle.circumference(14));

export default 命令

从前面的例子可以看出,使用import命令的时候,用户需要知道所要加载的变量名或函数名,否则无法加载。但是,用户肯定希望快速上手,未必愿意阅读文档,去了解模块有哪些属性和方法。

为了给用户提供方便,让他们不用阅读文档就能加载模块,就要用到export default命令,为模块指定默认输出。

1
2
3
4
// export-default.js
export default function () {
console.log('foo');
}

其他模块加载该模块时,import命令可以为该匿名函数指定任意名字。

1
2
3
// import-default.js
import customName from './export-default';
customName(); // 'foo'
1
2
3
4
5
6
7
8
9
10
11
12
13
// 第一组
export default function crc32() { // 输出
// ...
}

import crc32 from 'crc32'; // 输入

// 第二组
export function crc32() { // 输出
// ...
};

import {crc32} from 'crc32'; // 输入

上面代码的两组写法,第一组是使用export default时,对应的import语句不需要使用大括号;第二组是不使用export default时,对应的import语句需要使用大括号。

export default命令用于指定模块的默认输出。显然,一个模块只能有一个默认输出,因此export default命令只能使用一次。所以,import命令后面才不用加大括号,因为只可能对应一个方法。

export 与 import 的复合写法

如果在一个模块之中,先输入后输出同一个模块,import语句可以与export语句写在一起。

1
2
3
4
5
export { foo, bar } from 'my_module';

// 等同于
import { foo, bar } from 'my_module';
export { foo, bar };

跨模块常量

本书介绍const命令的时候说过,const声明的常量只在当前代码块有效。如果想设置跨模块的常量(即跨多个文件),或者说一个值要被多个模块共享,可以采用下面的写法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// constants.js 模块
export const A = 1;
export const B = 3;
export const C = 4;

// test1.js 模块
import * as constants from './constants';
console.log(constants.A); // 1
console.log(constants.B); // 3

// test2.js 模块
import {A, B} from './constants';
console.log(A); // 1
console.log(B); // 3

import()

前面介绍过,import命令会被 JavaScript 引擎静态分析,先于模块内的其他模块执行(叫做”连接“更合适)。

1
2
3
4
// 报错
if (x === 2) {
import MyModual from './myModual';
}

这样的设计,固然有利于编译器提高效率,但也导致无法在运行时加载模块。从语法上,条件加载就不可能实现。如果import命令要取代 Node 的require方法,这就形成了一个障碍。因为require是运行时加载模块,import命令无法取代require的动态加载功能。

因此,有一个提案,建议引入import()函数,完成动态加载。

import()返回一个 Promise 对象。

编程风格

块级作用域

(1)let 取代 var

letconst之间,建议优先使用const,尤其是在全局环境,不应该设置变量,只应设置常量。

字符串

静态字符串一律使用单引号或反引号,不使用双引号。动态字符串使用反引号。

1
2
3
4
5
6
7
8
9
10
11
// bad
const a = "foobar";
const b = 'foo' + a + 'bar';

// acceptable
const c = `foobar`;

// good
const a = 'foobar';
const b = `foo${a}bar`;
const c = 'foobar';

解构赋值

使用数组成员对变量赋值时,优先使用解构赋值。

函数的参数如果是对象的成员,优先使用解构赋值。

如果函数返回多个值,优先使用对象的解构赋值,而不是数组的解构赋值。这样便于以后添加返回值,以及更改返回值的顺序。

对象

单行定义的对象,最后一个成员不以逗号结尾。多行定义的对象,最后一个成员以逗号结尾。

对象尽量静态化,一旦定义,就不得随意添加新的属性。如果添加属性不可避免,要使用Object.assign方法。

数组

使用扩展运算符(...)拷贝数组。

1
2
3
4
5
6
7
8
9
10
11
// bad
const len = items.length;
const itemsCopy = [];
let i;

for (i = 0; i < len; i++) {
itemsCopy[i] = items[i];
}

// good
const itemsCopy = [...items];

使用Array.from方法,将类似数组的对象转为数组。

1
2
const foo = document.querySelectorAll('.foo');
const nodes = Array.from(foo);

函数

立即执行函数可以写成箭头函数的形式。

那些需要使用函数表达式的场合,尽量用箭头函数代替。因为这样更简洁,而且绑定了this。

箭头函数取代Function.prototype.bind,不应再用self/_this/that绑定 this

1
2
3
4
5
6
7
8
9
10
11
// bad
const self = this;
const boundMethod = function(...params) {
return method.apply(self, params);
}

// acceptable
const boundMethod = method.bind(this);

// best
const boundMethod = (...params) => method.apply(this, params);

不要在函数体内使用arguments变量,使用rest运算符(…)代替。因为rest运算符显式表明你想要获取参数,而且arguments是一个类似数组的对象,而rest运算符可以提供一个真正的数组。

Class

总是用Class,取代需要prototype的操作。因为Class的写法更简洁,更易于理解。

模块

首先,Module语法是JavaScript模块的标准写法,坚持使用这种写法。使用import取代require

使用export取代module.exports

SIMD

SIMD 通常用于矢量运算。

1
2
3
4
5
6
7
8
9
var a = [1, 2, 3, 4];
var b = [5, 6, 7, 8];
var c = [];

c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
c[3] = a[3] + b[3];
c // Array[6, 8, 10, 12]

如果采用 SIMD 模式,只要运算一次就够了。

1
2
3
var a = SIMD.Float32x4(1, 2, 3, 4);
var b = SIMD.Float32x4(5, 6, 7, 8);
var c = SIMD.Float32x4.add(a, b); // Float32x4[6, 8, 10, 12]

ES6 转码

Babel转码器

Babel 是一个广泛使用的ES6转码器,可以将ES6代码转为ES5代码,从而在现有环境执行。这意味着,你可以用ES6的方式编写程序,又不用担心现有环境是否支持。下面是一个例子。

1
2
3
4
5
6
7
// 转码前
input.map(item => item + 1);

// 转码后
input.map(function (item) {
return item + 1;
});

上面的原始代码用了箭头函数,这个特性还没有得到广泛支持,Babel将其转为普通函数,就能在现有的JavaScript环境执行了。

配置文件.babelrc

Babel的配置文件是.babelrc,存放在项目的根目录下。使用Babel的第一步,就是配置这个文件。

该文件用来设置转码规则和插件,基本格式如下

1
2
3
4
{
"presets": [],
"plugins": []
}

presets字段设定转码规则,官方提供以下的规则集,你可以根据需要安装。

1
2
3
4
5
6
7
8
9
10
11
# ES2015转码规则
$ npm install --save-dev babel-preset-es2015

# react转码规则
$ npm install --save-dev babel-preset-react

# ES7不同阶段语法提案的转码规则(共有4个阶段),选装一个
$ npm install --save-dev babel-preset-stage-0
$ npm install --save-dev babel-preset-stage-1
$ npm install --save-dev babel-preset-stage-2
$ npm install --save-dev babel-preset-stage-3

然后,将这些规则加入.babelrc

1
2
3
4
5
6
7
8
{
"presets": [
"es2015",
"react",
"stage-2"
],
"plugins": []
}

注意,以下所有Babel工具和模块的使用,都必须先写好.babelrc

命令行转码babel-cli

Babel提供babel-cli工具,用于命令行转码。

它的安装命令如下。

1
$ npm install --global babel-cli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 转码结果输出到标准输出
$ babel example.js

# 转码结果写入一个文件
# --out-file 或 -o 参数指定输出文件
$ babel example.js --out-file compiled.js
# 或者
$ babel example.js -o compiled.js

# 整个目录转码
# --out-dir 或 -d 参数指定输出目录
$ babel src --out-dir lib
# 或者
$ babel src -d lib

# -s 参数生成source map文件
$ babel src -d lib -s

上面代码是在全局环境下,进行Babel转码。这意味着,如果项目要运行,全局环境必须有Babel,也就是说项目产生了对环境的依赖。另一方面,这样做也无法支持不同项目使用不同版本的Babel。

一个解决办法是将babel-cli安装在项目之中。

1
2
# 安装
$ npm install --save-dev babel-cli

然后,改写package.json

1
2
3
4
5
6
7
8
9
{
// ...
"devDependencies": {
"babel-cli": "^6.0.0"
},
"scripts": {
"build": "babel src -d lib"
},
}

转码的时候,就执行下面的命令。

1
$ npm run build

babel-node

babel-cli工具自带一个babel-node命令,提供一个支持ES6的REPL环境。它支持Node的REPL环境的所有功能,而且可以直接运行ES6代码。

它不用单独安装,而是随babel-cli一起安装。然后,执行babel-node`就进入REPL环境。

1
2
3
$ babel-node
> (x => x * 2)(1)
2

babel-node命令可以直接运行ES6脚本。将上面的代码放入脚本文件es6.js,然后直接运行。

1
2
$ babel-node es6.js
2

babel-node也可以安装在项目中。

1
$ npm install --save-dev babel-cli

然后,改写package.json

1
2
3
4
5
{
"scripts": {
"script-name": "babel-node script.js"
}
}

上面代码中,使用babel-node替代node,这样script.js本身就不用做任何转码处理。

babel-core

如果某些代码(Webpack 代码)需要调用Babel的API进行转码,就要使用babel-core模块。

安装命令如下。

1
npm install babel-core --save

然后,在项目中就可以调用babel-core。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
var babel = require('babel-core');

// 字符串转码
babel.transform('code();', options);
// => { code, map, ast }

// 文件转码(异步)
babel.transformFile('filename.js', options, function(err, result) {
result; // => { code, map, ast }
});

// 文件转码(同步)
babel.transformFileSync('filename.js', options);
// => { code, map, ast }

// Babel AST转码
babel.transformFromAst(ast, code, options);
// => { code, map, ast }

配置对象options,可以参看官方文档http://babeljs.io/docs/usage/options/。

下面是一个例子。

1
2
3
4
5
6
7
var es6Code = 'let x = n => n + 1';
var es5Code = require('babel-core')
.transform(es6Code, {
presets: ['es2015']
})
.code;
// '"use strict";\n\nvar x = function x(n) {\n return n + 1;\n};'

上面代码中,transform方法的第一个参数是一个字符串,表示需要被转换的ES6代码,第二个参数是转换的配置对象。

babel-polyfill

Babel默认只转换新的JavaScript句法(syntax),而不转换新的API,比如Iterator、Generator、Set、Maps、Proxy、Reflect、Symbol、Promise等全局对象,以及一些定义在全局对象上的方法(比如Object.assign)都不会转码。

举例来说,ES6在Array对象上新增了Array.from方法。Babel就不会转码这个方法。如果想让这个方法运行,必须使用babel-polyfill,为当前环境提供一个垫片。

安装命令如下。

1
$ npm install --save babel-polyfill

然后,在脚本头部,加入如下一行代码。

1
2
3
import 'babel-polyfill';
// 或者
require('babel-polyfill');

Babel默认不转码的API非常多,详细清单可以查看babel-plugin-transform-runtime模块的definitions.js文件。

在线转换

Babel提供一个REPL在线编译器,可以在线将ES6代码转为ES5代码。转换后的代码,可以直接作为ES5代码插入网页运行。